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regard to the phases (cocycles) necessary for a consistent definition of the vertex opera-

tors, the boundary states and the T-duality rules. We use these ingredients to compute

the planar multi-loop partition function describing the interaction among magnetized or

intersecting D-branes, also in presence of open string moduli. It turns out that unitarity

in the open string channel crucially depends on the presence of the cocycles. We then

focus on the 2-loop case and study the degeneration limit where this partition function is

directly related to the tree-level 3-point correlators between twist fields. These correlators

represent the main ingredient in the computation of Yukawa couplings and other terms

in the effective action for D-brane phenomenological models. By factorizing the 2-loop

partition function we are able to compute the 3-point couplings for abelian twist fields on

generic non-factorized tori, thus generalizing previous expressions valid for the 2-torus.
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1. Introduction

The relation between the modular and the unitarity properties of open string amplitudes

have played a crucial role in deepening our understanding of string theory. For instance,

Lovelace [1] studied the modular transformation of 1-loop non-planar open string ampli-

tudes. By requiring that these amplitudes do not contain cuts, he discovered the critical

dimension of bosonic string theory. More than twenty years later Polchinski [2] used the

same modular transformation between the open and the closed string channels on the 1-

loop partition function with Neumann and Dirichlet boundary conditions. By doing so

he was able to show that D-branes are actually dynamical objects that have gravitational

couplings with closed strings.

The same interplay between modular transformations and unitarity properties exists

also for higher loop amplitudes. For instance, the open string diagram for the 2-loop

planar partition function is a Riemann surface with three boundaries and no handles.

This surface can be described either in the closed string channel as in figure 1a, or in

the open channel as in figure 1b. In the first case, by unitarity, one should be able to

decompose the result into a 3-vertex among closed strings and three boundary states. In

the open string parametrization, on the other hand, the same amplitude should factorize

into three open strings propagators and two 3-point vertices among open strings. This
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Figure 1: The twisted open string partition function with three borders and no handles (i.e. on

each boundary different left/right gluing conditions are imposed). In 1a the amplitude is depicted

in the closed string channel, while in 1b it is modular transformed and the open string propagation

is manifest.

double description of the 2-loop partition function is particularly interesting when different

left/right gluing conditions are imposed on the various boundaries. In [3] the bosonic

contribution to the twisted g-loop partition function was computed by using the closed

string description and then was modular transformed in the open string channel. It was

also shown that the factorization of the 2-loop diagram provides an effective strategy to

compute the couplings among twists fields (σǫ), which is alternative to the stress-energy

tensor technique of [4]. From the Conformal Field Theory (CFT) point of view, these σǫ’s

are operators implementing a change in the boundary conditions for the (complexified)

bosonic coordinates. The boundary conditions induced by the σǫ’s are appropriate to

describe open strings stretched between D-branes with constant magnetic fields [5] or D-

branes at angles [6]. This kind of open strings is one of the main ingredients in D-brane

model building (for a recent review see [7] and the references therein). The 3-twist field

correlators mentioned above provide the non-trivial part of the Yukawa couplings1[12 –

16, 3] and of other terms in the effective action generated by stringy instantons [17, 18].

In this paper we generalize the results of [3] in various ways. We compute the bosonic

contribution to the planar g-loop partition function for open strings on generic tori with

both multiply wound D-branes and non-zero Wilson lines or open string moduli. Then we

use this result to derive an explicit expression for the 3-twist field correlators valid beyond

the case of 2-torus. However, in our computations, we still keep a technical assumption:

the monodromy matrices characterizing the open strings stretched between the D-branes

must commute, see eq. (3.1). This is always the case when the gauge field strengths on

the various branes are themselves commuting or parallel. However this more stringent

condition is not necessary and we are able to compute the partition function also for some

setups involving oblique fluxes (according to the nomenclature of [19]). On the other

hand the assumption (3.1) will restrict our final results on the twist field couplings to

the abelian case. The D-brane configurations studied in this paper can be promoted to

1Actually the twist field couplings play the same role also in phenomenologically interesting compactifi-

cations of Heterotic string theory [4, 8 – 11]
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supersymmetry preserving setups, once they are embedded in superstring theory. This is

achieved simply by imposing some constraints on the magnetic fluxes to satisfy the D-term

and the F-term conditions. Moreover the latter ones are often automatically implied by

our hypothesis (3.1), since it ensures that there is a particular complex basis for the torus

where almost all magnetic fluxes are described by (1, 1)-forms.

As it was done in [3], we compute the twisted partition function in the closed string

channel by using the operator formalism (see [20, 21] for detailed discussion). This approach

requires particular care in dealing with some phase factors present in the definition of the

string vertex operators and boundary states. The origin of these phases is well-known: in

toroidal compactifications the logarithmic branch cut of the bosonic Green function can

sometime become visible and it is necessary to compensate for this by adding to the string

vertices a phase known as cocycle (see for instance the paragraph “A technicality” in section

8.2 of [22]). All cocycle factors were ignored in [3], but this had no visible effects because,

as we will show, these phases were not crucial in the particular examples considered there.

However, in general, the partition function is unitary, in the open string channel, only when

all phases have been taken into account. This comes as no surprise because the partition

function of figure 1a contains a sum over all possible 3-string vertices and the effect of the

cocycles becomes clearly visible since they yield relative phases between different terms.

The presence of these cocycles has some consequences also on the precise formulation of

the T-duality transformations. In fact these transformations should preserve both the

spectrum and the interactions, including, in the latter case, the phases needed for ensuring

the locality of the interactions. This does not happen with the naive version of the T-

duality rules usually written, and we show that it is necessary to introduce some cocycle

phases also in the T-duality transformation to recover a consistent picture.

Then we study the degeneration limit of the g = 2 partition function in the open

string channel, see figure 1b, and derive an explicit form for the 3-twist field correlators on

arbitrary tori. This computation, in presence of multiply wrapped D-branes, provides a

concrete example showing that the cocycle phases are crucial for unitarity already at the

level of the 2-loop partition function. Our result on the 3-twist field couplings generalizes

previous expressions valid for configurations that are completely factorized in a product of

2-tori [12 – 16, 3], which requires that both the background geometry and the D-brane gauge

field strengths are non-trivial only along the same orthogonal T 2’s and all “off-diagonal”

entries are put to zero. Even in presence of commuting fluxes this is a very particular

situation, where the so-called classical contribution to the 3-twist field correlators is written

in terms of Jacobi Theta-functions. In general, higher genus Theta-functions appear and

so the Yukawa couplings that arise in non-factorized D-brane models will have a more

complicated structure and a richer moduli dependence than those derived so far for the T 2.

However, we still find the same separation between Kähler and complex structure moduli

and only the latter ones enter in the expressions for the classical contribution (this in the

magnetized setup, of course the roles are switched in the language of D-branes at angles).

The structure of the paper is the following. In section 2 we briefly review the main

features of the string dynamics in toroidal compactifications. We pay particular care to the

cocycle factors in the definition of the vertices and of the boundary states. We show that
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these phases enter in a non-trivial way also in the T-duality transformation of the states

with non-zero Kaluza-Klein or winding numbers. In section 3 we revisit the computation of

the twisted partition function discussed in [3] and include the effect of the Wilson lines and

the D-brane multiple wrappings. The only hypothesis we still take is to restrict ourselves

to the case of commuting monodromy matrices (see eq. (3.1)). In section 4 we focus on

the g = 2 case and study the unitarity properties of the result. By doing so we derive the

general expression for the 3-point correlators between abelian twist fields. Finally some

technicalities are left to the appendix.

2. Toroidal compactifications

2.1 Some properties of T 2d

A 2d-dimensional real torus T 2d is defined by a collection of 2d vectors aM in the Euclidean

space R
2d: T 2d is simply R

2d modulo the identification with integer shifts along the aM ’s

x ≡ x + 2π
√

α′

2d
∑

M=1

cMaM , ∀x ∈ R
2d and cM ∈ Z . (2.1)

One can choose a Cartesian reference frame and write the components of each vector aM

as aa
M . Then the metric on T 2d is2 GMN =

∑2d
a=1 aa

Maa
N . The components of each aM can

be used to fill in the column vectors of a square matrix Ea
M ≡ aa

M ; then, by construction,

E is a vielbein matrix satisfying

G = tEE , 1 = tE−1GE−1 . (2.2)

The inverse matrix E−1 instead has the dual vectors âM as rows:
∑2d

a=1 âM
a aa

N = δM
N . Of

course any other matrix E′ = OE obtained by means of an orthogonal rotation O of E

is a good vielbein matrix. We can also introduce complex coordinates and the complex

vielbein E , such that

E = SE , S =
1√
2

(

1 i

1 −i

)

, (2.3)

where all the four blocks of S are proportional to the d × d identity matrix. Two sets

of complex coordinates are inequivalent if they cannot be connected by a unitary trans-

formation. Thus the SO(2d) ambiguity in the definition of the E’s implies that on the

same real torus there is a set of inequivalent complex structures which is parametrized by

SO(2d)/U(d). Notice that in the complex coordinates the flat metric G is off-diagonal

G = tE−1GE−1 = S̄S−1 =

(

0 1

1 0

)

. (2.4)

In presence of a constant antisymmetric two-form, there is a particular complex struc-

ture that plays a special role. Of course in our applications this 2-form will be the gauge

2In our conventions the coordinates with the indices M, N, . . . are parallel to the lattice defining the

torus; they have period 2π
√

α′ and are referred to as the integral basis.
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invariant combination between the Kalb-Ramond B-field and F , the magnetic field on the

D-Branes: F = B + F , thus we will indicate this antisymmetric tensor with F already in

this section (notice the different convention with respect to [3], as here the factor of 2πα′ in

front of F is reabsorbed in the definition of a dimensionless magnetic field). Its expression

in a real cartesian basis is

Fc = tE−1FE−1 = EG−1FE−1 . (2.5)

and is related by a similarity transformation to the combination G−1F which will be the

most relevant in the following sections. The antisymmetric matrix Fc can be reduced to a

block-diagonal form Fb.d. by means of an orthogonal rotation Of (where the subscript is

just to recall that this transformation depends in general on F)

Fb.d. =

(

0 fd

−fd 0

)

= tE−1
f FE−1

f = EfG−1FE−1
f , (2.6)

where fd is a d × d diagonal matrix with real entries faa. The vielbein matrix Ef = OfE

transforms at the same time the metric G into the identity and F into the block-diagonal

matrix (2.6). Of course we can use the vielbein matrix Ef to introduce a particular set of

complex coordinates (Ef = SEf ) which diagonalizes G−1F

F (d) = EfG−1FE−1
f =

(

−ifd 0

0 ifd

)

= G tE−1
f FE−1

f , (2.7)

where tE−1
f FE−1

f is a block-diagonal matrix. From (2.7) it is easy to see that, in this

complex basis, F is a (1, 1)-form. In the following we will always use, as Cartesian basis,

the one defined by the vielbeins Ef or Ef , thus we will drop the subscripts without risk

of ambiguities. Finally let us recall the definition of the complex structure as the mixed

tensor

I = idz ⊗ ∂

∂z
− idz̄ ⊗ ∂

∂z̄
. (2.8)

In the following sections we will need the expression of I b
a in the integral basis, which is

easily derived by using the complex vielbein E :

I N
M =

(

tE
) a

M
I b

a

(

tE−1
) N

b
. (2.9)

2.2 Closed strings on T 2d

The coordinates of the closed strings propagating on T 2d with a constant background B-

field can be written as a sum of left and right handed fields, and the world-sheet is described

by a free CFT. Then we have the usual mode expansion

xM
cl (z, z̄) =

XM
cl (z) + X̃M

cl (z̄)

2
, where XM

cl (z) = xM − i
√

2α′αM
0 ln z + i

√
2α′

∑

m6=0

αM
m z−m

m
,

(2.10)
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and the complexified world-sheet coordinates are

z = eτ+iσ and z̄ = eτ−iσ , (2.11)

τ and σ being the world-sheet time and spacial coordinates respectively. Upon canonical

quantization, the commutation relations for the oscillators in eq. (2.10) are

[

αM
m , αN

−n

]

= nδm,nGMN , and
[

xM , αN
0

]

= i
√

2α′GMN , (2.12)

and similarly in the right moving sector. The allowed winding and Kaluza-Klein modes are

encoded in the Narain lattice which depends on the background fields G and B as follows

αM
0 =

GMN

√
2

[

n̂N + (GNN ′ − BNN ′) m̂N ′
]

, α̃0
M =

GMN

√
2

[

n̂N − (GNN ′ + BNN ′) m̂N ′
]

,

(2.13)

where n̂M and m̂M are respectively the Kaluza-Klein and winding numbers operators.

Let us now consider the interacting theory and pay particular attention to the phases

necessary when the target space is compact. The basic building block is the tree-level

coupling among three generic closed strings (Reggeon vertex). Since there is no preferred

ordering of three points on a sphere, this vertex must be invariant under the action of

the permutation group exchanging any of the punctures. The usual emission vertex valid

in the uncompact space does not have this property when it is naively generalized to the

T 2d case. This is a well known issue, related to the compactness of the target space, and

it is a consequence of the logarithmic branch cut of the bosonic Green function. Similar

problems arise also in the usual formalism of the vertex operators describing the emission of

particular on-shell string states (see, for instance, section 8.2 in [22]). In order to eliminate

this branch cut one has to add suitable cocycle factors to the usual expression of the vertex

operators. Here we tackle this issue exactly in the same way by generalising these cocycle

factors to the Reggeon vertex formalism.

In order to see that the usual 3-string vertex for closed strings is not invariant under

the permutation of the external states when the target space is a torus, it is sufficient to

focus on the zero-modes contribution. The explicit form of the full vertex V3 can be found,

for instance, in [3] and its zero-mode part is simply

exp





2
∑

j>i=0

αi
0 ln(zj − zi)Gαj

0 +

2
∑

j>i=0

α̃i
0 ln(z̄j − z̄i)Gα̃j

0



 , (2.14)

where the zi (i = 0, 1, 2) are the positions of the three punctures on the sphere (which is

represented as the compactified complex plane); the upper index identifies one of the three

external states, and all space-times indices have been suppressed. The oscillator part of the

3-string vertex is invariant under the exchange of the strings 1 ↔ 2, while the zero-mode

contribution (2.14) gets a phase given by

exp
[

−iπ
(

α1
0Gα2

0 − α̃1
0Gα̃2

0

)]

= exp

[

−iπ

(

n̂1m̂2 + m̂1n̂2

)]

, (2.15)
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where we have used (2.13). By using this result, we can build a new invariant vertex with

a cocycle factor that compensates for the phase (2.15). A possible choice for this cocyle

factor is

V c
3 = V3 exp

[

iπ

2

(

n̂1m̂2 − m̂1n̂2

)]

. (2.16)

By using the conservation of the Kaluza-Klein and winding numbers of the emitted strings,

the vertex (2.16) is now easily shown to be invariant under the full permutation group acting

on the three punctures.

However, the cocycle factor added seems to break the vertex invariance under T-

Duality transformations. For instance, there is a particular T-duality transformation that

exchanges the Kaluza-Klein and winding operators. If its effect could be simply written

as n̂ ↔ m̂, as it is usually done, then we could have that V c
3 → −V c

3 for certain external

states. In order to clarify this point, let us see the transformation properties of V c
3 under a

generic T-duality transformation. These transformations can be encoded in a O(2d, 2d, Z)

matrix [23]

T =

(

a b

c d

)

, with a tb + b ta = 0 , c td + d tc = 0 , a td + b tc = 1 , (2.17)

where a, b, c and d are 2d × 2d matrices and their constraints follow from the group

definition, namely

J = TJ tT , J =

(

0 1

1 0

)

. (2.18)

Let us observe that, as J = J−1, by inverting the relation above, one finds that also tT is

an O(2d, 2d, Z) matrix with similar constraints imposed on its entries. The duality acts as

follows on the geometrical background

G′ + B′ = [a(G + B) + b] [c(G + B) + d]−1 (2.19)

and on the string oscillators

αn = T+α′
n , α̃n = T−α̃′

n , (2.20)

where

T± = [c(±G + B) + d]−1 . (2.21)

Notice that one can prove [23] that tT±GT± = G′. Focusing now on the zero-modes,

we can derive from (2.20) the action of the T-duality transformation on the winding and

Kaluza-Klein operators

n̂ = tdn̂′ + tbm̂′ , m̂ = tcn̂′ + tam̂′ ⇐⇒ n̂′ = an̂ + bm̂ , m̂′ = cn̂ + dm̂ (2.22)

Then the transformation law for the vertex (2.16) is

V c
3 = V c′

3 eiπ[tn̂′
1dtcn̂′

2+
tm̂′

1btam̂′
2+tn̂′

1dtam̂′
2+tm̂′

1btcn̂′
2−

tn̂′
1m̂′

2] (2.23)

= V c′
3

2
∏

j=0

{

eiπ[
P

M<N((n̂′
j)M (dtc)MN (n̂′

j)N +(m̂′
j)

M (bta)MN (m̂′
j)

N )+tm̂′
jbtcn̂′

j]
}

,
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where in the last line we used of the conservation of windings and momenta. Thus the

vertex (2.16) is fully symmetric under permutations of the external states, but is not

invariant under the T-Duality transformations (2.20). However, it is interesting to notice

that the phase (which is actually just a sign) generated by the transformations (2.20) can

always be written as a product of three terms each one depending only a single external

state, as it is done in the second line of (2.23). This means that the invariance of the

vertex (2.16) under T-Duality can be restored, provided that we introduce the appropriate

cocycle also in the T-duality transformations, as a generalisation of the standard rules

discussed above and in [23]. In fact it is sufficient to postulate that the closed string

states transform according to (2.22) and also acquire the same phase in the curly brackets

of (2.23)

|n,m〉 → eiπ[
P

M<N((n̂′)M (dtc)MN (n̂)N+(m̂′)M (bta)MN (m̂′)N )+tm̂′btcn̂′] |n′,m′〉 . (2.24)

We will see in the following section that this is indeed the case when considering boundary

states describing magnetised D-Branes as dual for instance to configurations of purely

Dirichlet or intersecting D-Branes.

It is not difficult to generalize the analysis above to the case of a Reggeon vertex

describing the interaction of many closed strings. This can be obtained just by gluing

together the 3-point vertices (2.16) and the result is

V c
N+1 = VN+1 exp





πi

2

N
∑

j>i=1

(

n̂im̂j − m̂in̂j

)



 . (2.25)

Here VN+1 is the standard vertex, where the cocycles are ignored and, as before, the indices

i, j = 0, 1, . . . , N label the N + 1 external states.

2.3 The Boundary State for a wrapped magnetized D-Brane

In this section we study, from the closed string point of view, the space-filling magnetised

D-Branes with generic wrapping numbers on the torus cycles (see [24, 25] for previous works

on this subject). In the closed string sector D-Branes are described by boundary states

|BF 〉 that enforce an identification between the left and right moving modes (for a review

of the boundary state formalism in the Ramond Neveu-Schwarz formalism see [26, 27]).

For magnetized D-branes we have

[(G + F)αn + (G −F)α̃−n] |BF 〉 = 0, ∀n ∈ Z , (2.26)

where we used the gauge invariant combination of the Kalb-Ramond B-field and the field

strength F on the D-brane: F = B + F . In the integral basis, the magnetic field is

quantized as a consequence of the compactness of the torus,

FMN =
pMN

wMwN
, (2.27)

pMN being an integer matrix and wM being the wrapping numbers of the D-Brane along

the cycles of the torus. Clearly eq. (2.26), being a set of linear constraints, fixes the form
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of the boundary state up to an overall factor that can also depend on the Kaluza-Klein

and winding operators. We will now show that the boundary state for a magnetised D-

Brane does indeed contain non-trivial phases that depend on the winding numbers and

on the field F ; moreover it turns out that this phase is strictly related to the phase that

closed string states acquire under T-Duality. Following [28], we consider the gauge field

contribution to the action in the string path-integral as an interaction term that acts on

the standard boundary state for an unmagnetised D-Brane wrapping the T 2d. We want to

derive the dependence of |BF 〉 on the magnetic field by applying the usual path ordered

Wilson loop operator P[exp ( i
2πα′

∮

Adx)] to |BF=0〉. The computation was performed

in [28] in a Minkowski flat target space, while the novelty of the present calculation3 is the

compactness of the torus wrapped by the D-Branes. As the non-zero modes contribution

to the boundary state is not affected by the shape of the target space, we will mostly focus

on the zero-modes. Of course, our aim is to determine all the F -dependent terms that

cannot be fixed from (2.26). In order to do so we have to pay some care to the definition

of the Wilson loop operator.

2.3.1 Gauge bundles and gauge invariant Wilson loop

Any gauge potential for (2.27) will involve a linear, and thus non-periodic, function. Let

us start from the simpler case wM = 1, ∀M . As usual, we need to compensate for the non-

periodicity of A by introducing a set of gauge transformations UN . Each UN encodes the

gluing conditions for the gauge potential between two copies of the torus that are adjacent

along the N -th direction in the covering space. So the gauge potential living on a D-Branes

world volume wrapping a cycle of the compactification torus must satisfy

AM

(

x + 2π
√

α′aN

)

= UN (x)
(

2πα′i∂M + AM (x)
)

U †
N (x) , (2.28)

where aN denotes the N -th cycle of the torus. In the case under analysis, all gauge

transformations UN belong to U(1) and so the formula above can be further simplified. We

choose not to do it, so as to keep the equations (2.28)–(2.31) valid also for the non-abelian

generalization that we will need once we reintroduce multiple wrappings. The background

gauge field (gauge bundle) is properly defined by eq. (2.27) together with the set of UN ’s.

In order to have a consistent bundle, the gluing matrices must satisfy the overlap condition

U †
N (x)U †

M

(

x + 2π
√

α′aN

)

UN

(

x + 2π
√

α′aM

)

UM (x) = 1 . (2.29)

All fields charged under the gauge potential have to obey periodicity conditions similar

to (2.28). For instance, fields transforming in the fundamental (Φ) or in the adjoint (Ψ)

representation must satisfy

Φ
(

x + 2π
√

α′aN

)

= UN (x)Φ(x) , Ψ
(

x + 2π
√

α′aN

)

= UN (x)Ψ(x)U †
N (x) . (2.30)

As a consequence of eq. (2.30), under a generic gauge transformation γ(x), the gluing

matrices UN transform in the following fashion

UN (x) → γ
(

x + 2π
√

α′aN

)

UN (x)γ†(x) . (2.31)

3An analogous calculation is performed in [29]; we thank I. Pesando for letting us know their results

before publication.
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Notice that there are no restrictions on γ(x) and in particular it does not have to be

periodic. So the form of the UN ’s can change under a gauge transformation.

We now focus on the definition of the Wilson loop operator we need for the computation

of the magnetized boundary state. Let us consider a path c connecting two points that are

separated by the lattice vector
∑2d

L=1 mLaL, mL ∈ Z (which means that they are identified

on the torus). In order to be consistent with our convention for F , this path will start from

x + 2π
√

α′
∑2d

L=1 mLaL and end in x. Then it is clear that the naive path ordered Wilson

loop operator is not gauge invariant,4 but transforms as

P[ei
R

c
Adx] → γ(x) P[ei

R

c
Adx] γ†

(

x + 2π
√

α′

2d
∑

L=1

mLaL

)

. (2.32)

We can recover a gauge invariant object if we multiply the Wilson loop (2.32) by a sequence

of U ’s which forms a discretized version of the path c. By using (2.29) we can choose to

collect together all shifts along the direction K = 1, then those along K = 2 and so on. In

formulae we have
[

2d
∏

K=1

mK−1
∏

m=0

UK

(

x + 2π
√

α′

K−1
∑

L=1

mLaL + 2π
√

α′maK

)]

P[e
i

2πα′
R

c
Adx] , (2.33)

where only the values mK ≥ 1 are relevant (if we have mK = 0 for certain K, then the

corresponding UK does not appear in the product). By using (2.31) and (2.32) (and (2.28)),

one can check that (2.33) is invariant under an arbitrary U(1) gauge transformation γ(x)

(and does not depend on the initial point x of the path c).

2.3.2 Wrapped D-Branes as non abelian gauge bundles

A D-brane with multiple wrappings (wM > 1 for some M) is better described [30, 31]

in terms of a non-trivial gauge bundle on the torus T 2d [32]. In the D-brane language

this amounts to considering a set of w =
∏2d

M=1 wM coincident D-branes with the same

gauge field strength (2.27), but with non-trivial transition matrices UM . The non-abelian

character of the configuration is encoded in the UM ’s that, as consequence of (2.30), glue

together the various D-branes in a single wrapped object. In absence of magnetic fields,

this can be easily seen by choosing as UM the following wM × wM transition matrix

UM = PwM×wM
=

















0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . .

...

1 0 0 0 · · · 0

















. (2.34)

Notice that, when F = 0, a D-Brane wrapped wM times along the M -th cycle of the torus

can be smoothly deformed, at the classical level, into wM coincident branes [33, 34]. This

means that there is a family of flat gauge bundles interpolating between (2.34) and UM = 1.

4and even depends on the initial point x of the path c.
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In order to introduce the effect of the magnetic field (2.27) on the D-Brane, it turns

out to be convenient to choose a fundamental cell of the torus lattice where this field is

in a block-diagonal form. This can be always done [35] (see also the appendix for a more

pedestrian proof), so from now on we take

F =

















0 p1

W1
0 0 · · ·

− p1

W1
0 0 0 · · ·

0 0 0 p2

W2
· · ·

0 0 − p2

W2
0 · · ·

...
...

...
...

. . .

















, (2.35)

where pα ∈ Z and Wα ∈ Z − {0}, ∀α = 1, . . . , d. Notice that even if the field F now

describes a direct product of d T 2’s inside the T 2d, the compactification is in general non

factorizable as a consequence of the form of the metric. The pα’s can be interpreted as

the Chern classes of the magnetic fields while the Wα’s are the products of the couples of

wrapping numbers on each of the T 2’s inside T 2d.

Two comments are in order now. First, if pα and Wα are not co-prime, the configuration

can again be smoothly deformed, at the classical level, to a new configuration with co-prime

p′α and W ′
α and p′α/W ′

α = pα/Wα. Second it is not necessary to specify all the wrappings

of the brane along each cycle of the torus. In fact it is possible to show that configurations

of magnetized D-Branes with the same product of wrappings along the pairs of cycles of

the T 2’s inside the T 2d defined by the form of the field (2.35) are equivalent. Indeed the

transition matrices defining the gauge bundle of a brane wrapped along a T 2 are related by

a gauge transformation if they describe branes with the same Chern class p and the same

product of the wrappings W . Thus we can choose to wrap the branes Wα times along the

even directions xM ≡ x2α only. We will also make the following gauge choice for the gauge

potential (2.35)

AM≡2α(x) =
pα

Wα
x2α−1 + 2π

√
α′C2α−1 and AM≡2α−1(x) = 2π

√
α′C2α , ∀α = 1, . . . d ,

(2.36)

where we have introduced non-zero Wilson lines 2π
√

α′CM , with CM adimensional. In

this way the non abelian gauge bundle describing the magnetized wrapped D-Brane is

characterized by

U2α(x) = 1W1×W1 ⊗ . . . ⊗ PWα×Wα ⊗ 1Wα+1×Wα+1 ⊗ . . . ⊗ 1Wd×Wd
(2.37)

U2α−1(x) = 1W1×W1 ⊗ . . . ⊗ (QWα×Wα)pα ⊗ 1Wα+1×Wα+1 ⊗ . . . ⊗ 1Wd×Wd
e

i√
α′

pα
Wα

x2α

,

where QWα×Wα = diag
{

1, e2πi/Wα , . . . , e2πi(Wα−1)/Wα
}

. Notice that the form of the tran-

sition matrices UM is not affected by the presence of the Wilson-lines as for them the

relation (2.28) is trivially satisfied by the identity gluing matrix.

The generalization of (2.33) to this non-abelian setup is straightforward and the oper-

ator we need to use to derive the magnetized boundary state from the unmagnetized one
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reads

OA = Tr

{[

2d
∏

K=1

m̂K−1
∏

m=0

UK

(

xcl +

K−1
∑

L=1

2π
√

α′m̂LaL + 2π
√

α′maK

)]

P[e
i

2πα′
R

c
Adxcl ]

}

,

(2.38)

where the xM
cl ’s are the usual string coordinates (2.10) and the m̂M ’s are the operators that

read the winding numbers of the closed string states. In this non-abelian generalization we

have to put U(x) at the right hand of the sequence and then follow the order determined

by the path c.

2.3.3 Computation of the Boundary State

We can now compute the action of OA on the unmagnetized boundary state |BF,C〉 =

OA|BA=0〉. The unmagnetized boundary state for a wrapped D-Brane is found from the

one of an unwrapped brane (see [27] and references therein) by applying the same opera-

tor (2.38) with the choice

AM = 0 and UK = 1w1×w1 ⊗ . . . ⊗ PwK×wK
⊗ 1wK+1×wK+1

⊗ . . . × 1w2d×w2d
, (2.39)

with P defined as in eq. (2.34). In this case the trace in (2.38) reads

Tr

[

2d
∏

K=1

U m̂K

K

]

(2.40)

and it is different from zero only when the windings of the emitted closed strings are integer

multiples of the wrappings of the D-Brane on each cycle of the torus. Hence only these

states couple to the wrapped D-brane, as expected, and we have

|BA=0〉 =
√

Det(G + B)
∑

mM∈Z

∞
∏

n=1

e−
1
n

α̃†
nGR0 α†

n |0;wMmM 〉 , (2.41)

where there is no sum understood over the repeated index M ; R0 = (G − B)−1(G + B)

is the identification matrix between left and right moving oscillators and depends on the

geometric background of the torus; finally the ket |0;wMmM 〉 represents the closed string

vacuum state with zero Kaluza-Klein momenta and winding numbers equal to wMmM for

M = 1, 2, . . . , 2d.

It is easy to begin by turning on only the Wilson lines and to keep vanishing magnetic

fields on the D-brane world volume. We have just to isolate the Wilson line contribution

to OA in (2.38) when acting on |BA=0〉, namely

|BC〉 = e
i√
α′

R

c
C·dx |BA=0〉 = e2πiC·m̂|BA=0〉 . (2.42)

The explicit evaluation of the contributions of the magnetic fields F is longer. It can

be split into the zero and non-zero mode part of the string coordinate xcl(z, z̄) defined

in (2.10). Let us focus on the zero-mode part of the computation, since the non-zero mode

contribution has just the effect of replacing B with F in (2.41), see [28]. A first result is
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that the magnetized boundary state couples only with the closed strings whose windings

in the α-th T 2 (as defined by the form of the magnetic field in (2.35)) are integer multiples

of Wα. This is again a consequence of the trace in (2.38) where the transition matrices are

defined as in eq. (2.37). It is convenient to define the 2d × 2d matrix

w =







W1 0 · · ·
0 W2 · · ·
...

...
. . .






⊗ 12×2 (2.43)

and use wm to indicate the 2d column vector containing the windings of the closed strings

emitted by the magnetized D-Brane. We can also see how the action of OA yields the

relation between windings and Kaluza-Klein numbers

n̂ = −Fm̂ , (2.44)

which is usually derived from the identification imposed by eq. (2.26) on the closed string

zero-modes. For this, it is sufficient to focus on the zero-modes contribution linear both in

the position operator q̂M =
(

xM + x̃M
)

/2 and in the oscillators α0 or α̃0. Using the form

of F in eq. (2.35) with the gauge choice (2.36) and the transition matrices (2.37), we can

evaluate this contribution as follows

|BF 〉 ∼ e
i√
α′

Pd
α=1

pα
Wα

m̂2α−1q̂2αe
−i

√
α′

2
√

2

Pd
α=1

R 2π

0
dσ 1

2πα′
pα
Wα

(x2α−1+x̃2α−1)(α2α
0 −α̃2α

0 )|0;wm〉

= e
i
Pd

α=1
pα
Wα

m̂2α−1
q̂2α√

α′ e
−i

Pn
α=1

pα
Wα

q̂2α−1√
α′ m̂2α |0;wm〉 = |−Fwm,wm〉 . (2.45)

Notice that at this stage we can forget about the path-ordering in the Wilson operator

OA and explicitly perform the integration in the first line of the previous equation, as

the zero-mode contributions of the string fields entering the Wilson loop in OA commute

with each other at different values of σ. Finally let us consider the terms quadratic in the

zero-modes α0 and α̃0 that follow from the standard Wilson loop exponential in eq. (2.38),

e−
i
2

Pd
α=1

R 2π

0
dσ 1

2π
pα
Wα

(α2α−1
0 α2α

0 −α̃2α−1
0 α2α

0 −α2α−1
0 α̃2α

0 +α̃2α−1
0 α̃2µ

0 )σ|−Fwm;wm〉 (2.46)

= e−iπ
Pd

α=1 Wαpαm2α−1m2α |−Fwm;wm〉 = e−iπ
P

M<N m̂M FMNm̂N |−Fwm;wm〉 .

The phase in (2.46) could not have been deduced just by looking at the constraints (2.26).

So the expression for the boundary state describing a magnetised D-Brane is

|BF,C〉 =
√

Det(G + F)
∑

m∈Z2d e−iπ
P

M<N m̂M FMNm̂N

e2πiCm̂ (2.47)

×
[

∞
∏

n=1

e−
1
n

α̃†
nGR α†

n

]

|−Fwm,wm〉 ,

where the identification matrix R is

R = (G −F)−1(G + F) . (2.48)

Even if the phase in eq. (2.47) has been calculated for a block diagonal F , in the appendix

we will prove that eq. (2.47) holds for a generic F (see eq. (2.27)), a part for possible half

integer shifts in the Wilson line.
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Let us now analyze how eq. (2.47) transforms under an O(2d, 2d, Z) transforma-

tion (2.17). Generically, after the T-duality, we have a new magnetized D-brane with

F ′ = (aF − b)(−cF + d)−1 , R′ = T−1
− RT+, (2.49)

as it can be seen by using the relations in (2.22); moreover, since F is an antisymmetric

matrix, also F ′ is antisymmetric, thanks to constraints in (2.17). If the combination (−cF +

d) in (2.49) is not invertible, then the transformed D-brane will have some direction with

Dirichlet boundary conditions. For instance, we can check that any magnetized brane can

be easily related to a lower dimensional D-Brane at angles via T-Duality. First let us put

the magnetic field in the block-diagonal form, as in eq. (2.35). Then, we T-dualize the even

direction of each of the T 2’s defined by F inside the T 2d, that is, we choose the following

O(2d, 2d, Z) matrix

a = d = 1d×d ⊗
(

1 0

0 0

)

and b = c = 1d×d ⊗
(

0 0

0 1

)

. (2.50)

By using the action of the duality transformations of the Kaluza-Klein and winding oper-

ators, as in eq. (2.22), the phase (2.46) can be rewritten as

e−iπ
Pd

α=1
pα
Wα

(W 2
α)m2α−1m2α = e−iπ

Pd
α=1 m̂′

2αn̂′
2α . (2.51)

Notice that this phase exactly compensates for the one that the closed string states in

the ket of (2.47) acquire under T-Duality, as stated in eq. (2.24). Thus we see that the

boundary states for purely geometrical configurations of D-Branes (like brane intersecting

at angles) do not contain any non trivial phase depending on the emitted closed strings

zero-modes, as expected. By reinstating the gs dependence and using the results of [36], it

is possible to show that also the prefactor
√

Det(G + F) transforms into the one expected

for the boundary state of a D-Brane at angle.

It is also possible to transform any magnetized D-brane into a D-brane with Dirichlet

boundary conditions along all the coordinates of the torus. In this case, the matrices c

and d defining the T-duality are related to the magnetic field F = c−1d. When F is block-

diagonal (2.35), one can choose c = w given by (2.43) and easily build integer matrices a

and b satisfying eqs. (2.17) using the fact that the wrappings Wα and the Chern numbers

pα are coprime. Exactly as in the previous example, the phase of the magnetized boundary

state cancels against the phase generated by the T-duality transformation (2.24). Thus one

recovers the standard form of a Dirichlet boundary state, where the identification matrix

is simply R = −1.

Finally the transformations on the closed strings zero-modes (2.24) show explicitly

that the Wilson lines in (2.47) are related to the positions of the D-Brane if the dualized

directions have Dirichlet boundary condition. For the case of the D-branes at angles, in

each of the two-dimensional tori inside the T 2d, half of the components of the Wilson lines

becomes positions and the remaining ones are still interpreted as residual Wilson lines on

the dualized brane. When the D-brane is transformed into a point in the compact space,

then all components of the Wilson lines are geometrized into positions of the dual D-brane.
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3. The twisted partition function

In this section we will compute the bosonic contribution to the open string twisted partition

function for multiply wrapped D-branes. The planar partition function Zg(F ) is obtained

by starting from the tree-level vertex (2.25) and sewing the external legs with boundary

states describing magnetized D-Branes with Wilson lines turned on (2.47). From the world-

sheet point of view, this means that we start with a sphere and cut out g + 1 boundaries

representing the magnetised D-branes. Thus we are dealing with a Riemann surface of

genus zero, with g + 1 borders and no crosscaps; in the open string channel it corresponds

to a g-loop diagram.

We start from the result obtained in [3] for D-branes without multiple wrappings and

where all cocycle phases were ignored.5 In the open string channel, one of the D-branes

(whose identification matrix is indicated with R0) is singled out as the external border of

the diagram; thus it is natural to introduce the monodromy matrices Sµ ≡ R−1
0 Rµ, with

µ = 1, . . . , g, whose eigenvalues are e±2πiǫα
µ (α = 1, 2, . . . , d). The only assumption we will

make on the monodromy matrices Sµ is that they commute with each other, namely that

[Sµ,Sν ] = 0 . (3.1)

Notice that this does not imply that the identification matrices Ri with i = 0, . . . , g also

commute with each other. Of course the converse holds and (3.1) is implied by the require-

ment that [Ri, Rj ] = 0. By following the classification of [19] this more restrictive constraint

is related to configurations with parallel magnetic fluxes. However, while eq. (3.1) is invari-

ant under the T-Duality, the constraint among the identification matrices R is not, as they

do not transform by a similarity transformation (see eq. (2.49)). Thus we will consider the

slightly more general class of configurations satisfying (3.1). In this case, it is convenient to

perform a T-Duality and transform the zero-th D-Brane into a purely Dirichlet D-Brane,

i.e. with R0 = −1. As discussed in the previous section, this can be done with a T-duality

having c−1d = F0. With this choice we have Sµ = −Rµ and the commutator above can be

rewritten as
[

G−1Fµ, G−1Fν

]

= 0 , (3.2)

with µ = 1, . . . , g only. This implies that there exists a complex basis in which all the

G−1Fµ are diagonal as in eq. (2.7). Moreover it implies:

[

G−1(Fµ̂ − Fg), G
−1(Fν̂ − Fg)

]

= 0, ∀µ̂, ν̂ = 1, . . . , g − 1 ; (3.3)

as a consequence, for a generic G one can deduce that a fundamental cell of the lattice

torus exists where all the field differences (Fµ̂ −Fg) are simultaneously block diagonal. At

any time, we can use again the T-duality rules discussed in the previous section and go

back to the original system with all magnetized D-branes.

5We follow as much as possible the conventions of that paper.
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We start from eq. (3.29) of [3] describing the g-loop partition function in the open

string channel

Zg(F ) ∼





g
∏

µ=1

√

Det (1 − G−1Fµ)





∫

[dZ]g A(0)
d

∏

α=1

[

e−iπ ~ǫα·τ ·~ǫα det τ

detT~ǫα

Rg (~ǫα · τ)

]

,

(3.4)

where [dZ]g is the untwisted (Fi = 0) result and ~ǫα collects in a vector of length g all the

twists ǫα; τ and T~ǫα are the standard and the twisted period matrix respectively. A(0)

is the classical contribution to the partition function calculated in [3] in absence of the

cocycle phases and setting all of the D-branes wrappings to one:

A(0) =
∑

∆ exp







πi

g−1
∑

µ̂,ν̂=1

αµ̂
0GS−1/2

µ̂ Dµ̂ν̂S1/2
ν̂ αν̂

0







, (3.5)

where Dµ̂ν̂ is a space-time matrix determined by the Sµ’s and the sum is over all the winding

numbers that satisfy the Kronecker’s deltas representing the identification (2.44) for each

boundary state and the Kaluza-Klein and winding conservations (recall that closed strings

emitted by the D-Brane with R0 = −1 are characterized by unconstrained Kaluza-Klein

momenta and no winding numbers):

∆ =





g
∏

µ=1

δ (n̂µ + Fµm̂µ)



 δ

(

g
∑

i=0

n̂i

)

δ





g
∑

µ=1

m̂µ



 . (3.6)

All the ǫ-dependent ingredients, including the function Rg and the matrix D, are defined

in [3] and, of course, depend on the moduli of the Riemann surface. We do not need the

precise form of all these ingredients, but only some properties that we will recall later in

this section. Notice that the classical contribution (3.5) is nontrivial only for g ≥ 2: for the

annulus we have A(0) = 1 and eq. (3.4) reduces to the partition function in the uncompact

space [37].

In this section we complete (3.5) to include also the effects of the cocycle phases,

multiple wrappings and open string moduli (Wilson lines and/or D-brane positions). The

classical contribution is the only part of the partition function that is affected by this

generalization, as it is clear from the form of the interaction vertex (2.25) and of the

magnetized D-Branes boundary states (2.47). Basically we need to include in the sewing

procedure the cocycle factor in (2.25) and the phases (2.47). Of course by following this

approach we are effectively working in the closed string description. However the new

contribution is independent of the world-sheet moduli and thus can be directly included in

eq. (3.4) which is written in the open string channel. It is then clear that, in the expression

for A, we will have the same exponential of eq. (3.5) multiplied by some additional factors

related to cocycles. So let us consider these new contributions: by using (2.25), (2.44)
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and (2.47), one can see that all the phases from the cocycles and the Wilson lines yield

exp







2πi





g
∑

µ=1

Cµm̂µ + Y0n̂0











× exp







πi

g
∑

µ=1

∑

M<N

m̂M
µ (Fµ)MN m̂N

µ







(3.7)

× exp







πi

2

g
∑

ν>µ=1

(m̂µFµm̂ν + m̂µFνm̂ν)







.

where Y0 encodes the position of the zero-th D-Brane which is point-like along the torus

directions. By using (3.6), we can eliminate m̂g from these sums. Then it is easy to see

that we can rewrite the dependence on the open string moduli as follows:

exp







2πi

g−1
∑

µ̂=1

[Cµ̂ − Cg + Y0(Fµ̂ − Fg)] m̂µ̂







≡ e
2πi

g−1
P

µ̂=1

tρµ̂m̂µ̂

. (3.8)

The second exponential in (3.7) comes from the boundary states; using the conservation

of the winding numbers, the exponent can be rewritten as follows:

g
∑

µ=1

∑

M<N

m̂M
µ (Fµ)MNm̂N

µ =

g−1
∑

µ̂=1

∑

M<N

m̂M
µ̂ (Fµ̂)MN m̂N

µ̂ −
g−1
∑

µ̂,ν̂=1

∑

M<N

m̂M
µ̂ (Fg)MNm̂N

ν̂ . (3.9)

By combining this contribution with the last exponent in eq. (3.7) and using (3.6) we get

exp



−πi

g−1
∑

µ̂,ν̂=1

∑

M<N

m̂M
µ̂ (Fµ̂ν̂)MNm̂N

ν



 , (3.10)

where

Fµ̂ν̂ = Fν̂µ̂ = Fν̂ − Fg , for ν̂ > µ̂. (3.11)

Observe that in order to obtain this final form we have changed the sign of the combination
∑

M<N m̂M
µ (Fµ)MNm̂N

µ as each term of the sum is integer (see the appendix).

Thus the total contribution from the various phase factors is just the product of (3.8)

and (3.10). This expression has no dependence on the metric of the torus and, in particular,

eq. (3.10) provides just some relative signs between contributions related to different values

of m̂. Moreover it depends only on the differences (Fν̂ −Fg); therefore, thanks to eq. (3.3),

we can always consider Fµ̂ν̂ block diagonal.

Let us now reconsider the exponential in (3.5). By using (2.13), (2.44), (3.2) and the

various conservation laws we can rewrite it as follows

exp







πi

2

g−1
∑

µ̂,ν̂=1

tm̂µ̂G
[

1 −
(

G−1Fµ̂

)2
]

1
2
Dµ̂ν̂(S)

[

1 −
(

G−1Fν̂

)2
]

1
2
m̂ν̂







, (3.12)

where we explicitly remind that D is a function of the space-time matrices S. It is conve-

nient to rewrite (3.12) in the complex basis defined by the vielbein E , where the G−1Fi’s
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are diagonal and denoted by F (d)
i as in eq. (2.7):

exp







πi

2

g−1
∑

µ̂,ν̂=1

tm̂µ̂

[

tEG
√

(

1 − (F (d)
µ̂ )2

)(

1 − (F (d)
ν̂ )2

)

(

Dµ̂ν̂(ǫ) 0

0 Dµ̂ν̂(−ǫ)

)

E
]

m̂ν̂







,

(3.13)

where now each Dµ̂ν̂ is d× d diagonal matrix that depends on the eigenvalues of the Sµ’s.

The square parenthesis in (3.13) is contracted with a symmetric combination of m̂, so

we can symmetrize it. Then, by using (2.4), one can easily check that (3.13) is equal to

exp







πi

2

g−1
∑

µ̂,ν̂=1

tm̂µ̂

[

tEG
√

(

1 − (F (d)
µ̂ )2

)(

1 − (F (d)
ν̂ )2

)

(

τ̂µ̂ν̂ 0

0 τ̂ν̂µ̂

)

E
]

m̂ν̂







, (3.14)

where the d × d diagonal matrix6 τ̂µ̂ν̂ is given by:

τ̂µ̂ν̂ ≡ 1

2
[Dµ̂ν̂(ǫ) + Dν̂µ̂(−ǫ)] . (3.15)

Expressing E in terms of the real vielbein E (E = SE, with S given in eq. (2.3)) we

can go to the real basis, where eq. (3.14) reads:

exp







πi

2

g−1
∑

µ̂,ν̂=1

tm̂µ̂





tE

√

(

1 − (F (d)
µ̂ )2

)(

1 − (F (d)
ν̂ )2

)

(

τ̂S iτ̂A

−iτ̂A τ̂S

)

µ̂ν̂

E



 m̂ν̂







, (3.16)

where τ̂S and τ̂A are the symmetric and the antisymmetric part of τ̂ , in the exchange of

µ̂, ν̂. As τ̂ is purely imaginary and Im τ̂S is positive definite because of the Riemann bilin-

ear identities [38] and moreover

(

√

1 − (F (d)
µ̂ )2

)

ab

= δab |
(

1 −F (d)
µ̂

)

aa
|, the convergence

of the series in eq. (3.5) is assured.

Following [39] we can rewrite the Born-Infeld square roots above in yet another way

by using another important consequence of the Riemann bilinear identities [38]:

Cµ̂ν̂ = Cν̂µ̂ ≡ 1

2
[Dµ̂ν̂(ǫ) −Dν̂µ̂(−ǫ)] = i

sin(πǫµ̂) sin(πǫν̂ − πǫg)

sin(πǫg)
, ν̂ > µ̂ , (3.17)

where also Cµ̂ν̂ and the sines are d × d diagonal matrices whose entries depend on the

different values of ǫ. This will be useful for the analysis of the degeneration limit in the

next section. The 2d × 2d matrix diag {sin(πǫµ), sin(πǫµ)} can be written as:7

(

sin(πǫµ) 0

0 sin(πǫµ)

)

=

√

1

1 − (F (d)
µ )2

. (3.18)

6Our τ̂ is equal to the τ of [38]; we indicate it with a different symbol in order to avoid confusion with

the standard period matrix.
7We will not keep track of the sign choices for the square roots: they clearly depend on whether each ǫµ

is negative or positive.
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This can be checked by rewriting the sine in terms of exponentials which are directly related

to the components of S in the complex basis: sin(πǫα
µ) = [

√

2 − S−1
µ − Sµ ]αα/2, α =

1, 2, . . . , d. Also, using the same procedure, we have

(

sin(πǫν̂ − πǫg) 0

0 sin(πǫν̂ − πǫg)

)

=

(

i 0

0 −i

)

(F (d)
g −F (d)

ν̂ )

√

(

1 − (F (d)
g )2

)(

1 − (F (d)
ν̂ )2

)

, (3.19)

with F (d)
µ defined as in eq. (2.7). From (3.18) and (3.19) one can see that

Cµ̂ν̂ = Cν̂µ̂ =

(

1 0

0 −1

)

(

F (d)
ν̂ −F (d)

g

)

√

(

1 − (F (d)
µ̂ )2

) (

1 − (F (d)
ν̂ )2

)

, for ν̂ > µ̂ . (3.20)

Thus we can eliminate the square roots in (3.14) in favor of C; then it is convenient to

decompose τ̂ into its symmetric (τ̂S) and the antisymmetric (τ̂A) parts. Hence we can

use eq. (2.7) to rewrite the diagonal fields F (d) in terms of the F ’s, take advantage of the

identity Fµ −Fν = Fµ −Fν , insert the contribution of the cocycles given by eq. (3.10) and

finally get the classical contribution to the twisted partition function describing wrapped

D-branes on an generic T 2d:

A =
∑

∆ exp







πi

g−1
∑

µ̂,ν̂=1

∑

M<N

tm̂M
µ̂ (Fµ̂ν̂)MNm̂N

ν̂







e
2πi

g−1
P

µ̂=1

tρµ̂m̂µ̂

(3.21)

×exp







πi

2

g−1
∑

µ̂,ν̂=1

tm̂µ̂
tE





(

τ̂S

C 0

0 − τ̂S

C

)

µ̂ν̂

+

(

τ̂A

C 0

0 τ̂A

C

)

µ̂ν̂





tE−1Fµ̂ν̂m̂ν̂







.

where Fµ̂ν̂ is the matrix defined in eq. (3.11).8 Then the full partition function is simply

given by (3.4), where A(0) is substituted by the complete expression above.

If we restrict ourselves to the case of a factorizable torus T 2d = (T 2)d, then (3.21)

agrees9 with the results of [38]. In order to make contact with their setup it is first useful

to perform a T-Duality in such a way that the singled-out boundary with identifications

encoded in the R0 matrix is transformed back to a magnetized D-Brane. From (2.49) we

can compute the transformation of the difference between two gauge field strengths

F ′
i − F ′

j = (Fj
tc + td)−1(Fj − Fi)(cFi − d)−1 . (3.22)

In particular the duality we performed to put R0 = −1 had d = cF0. Then by combining

eq. (3.22) with the transformation of the winding numbers (2.22), the amplitude (3.21)

8The inverse of C must be meant only with respect to the Lorentz indeces, at fixed µ̂ and ν̂.
9Apart from some factors of two.
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reduces to the following product of terms, each one related to a single T 2:

Aw
(T 2)d =

∑

∆ exp







πi

g−1
∑

µ̂,ν̂=1

∑

M<N

tm̂M
µ̂ (Fµ̂ν̂)MNm̂N

ν̂







e
2πi

g−1
P

µ̂=1

tρµ̂m̂µ̂

(3.23)

×
d

∏

α=1

exp







π

2

g−1
∑

µ̂,ν̂=1

tm̂α
µ̂

[

(

τS(ǫα)

C(ǫα)

)

µ̂ν̂

I(α) + i

(

τA(ǫα)

C(ǫα)

)

µ̂ν̂

]

F
(α)
µ̂ν̂ m̂α

ν̂







,

where now

Fµ̂ν̂ = Fν̂µ̂ = (F0 − Fµ̂)(F0 − Fg)
−1(Fg − Fν̂) , for ν̂ > µ̂, (3.24)

tρµ̂m̂µ̂ =
[

Cµ̂ − Cg(F0 − Fg)
−1(F0 − Fµ̂) − C0(F0 − Fg)

−1(Fµ̂ − Fg)
]

m̂µ̂

and I(α) is the complex structure of each of the T 2’s defined as eq. (2.9). This can be

compared with eq. (A.28) of [38]. The norm of the vector vi appearing there is related

to the Born-Infeld square roots: |viU |/
√

U2T2 = wµ̂

√

(

1 − (F (d)
µ̂ )2

)

. One can use this

in (3.20) and (4.8) together with the explicit expression for the T 2 complex structure (4.7)

to check that the two results are related by a further T-duality that exchanges T ↔ −1/U .

4. Twist fields couplings on T
2d

In this section we will focus on the vacuum diagram with three boundaries (i.e. g = 2)

and study the degeneration limit where all three open string propagators in figure 1b

become long and thin. In this situation the partition function factorizes in two tree-level

3-point correlators between twist fields. This result provides the main contribution for

the computation of the Yukawa couplings in string phenomenological models and of other

terms in the effective action generated by stringy instantons [17, 18]. For g = 2 the only

non-vanishing entry for τ̂ is clearly τ̂S
11, which has been computed, at leading order in

this degeneration limit, in [3]. Again the novelty of the present computation resides in the

analysis of the classical part (3.21), while all other ingredients of the partition function (3.4)

factorize exactly as before, since they do not depend on the wrapping numbers or the Wilson

lines. In the degeneration limit under study we have [3] that D11(ǫ) → 0 from which
(

τ̂ s(ǫ)

C(ǫ)

)

11

→ −1d×d (4.1)

thus the exponential in the second line of eq. (3.21) becomes

exp

{

π

2
tm̂1I(F2 − F1)m̂1

}

, (4.2)

where we have introduced the complex structure of the torus in the integral basis as in

eq. (2.9). In order to write the final form of the amplitude as a sum over unconstrained

integers, it is necessary to solve the conservations (3.6), which, in the case under study,

become

n̂1 = −F1m̂1 , n̂2 = −F2m̂2 , m̂1 + m̂2 = 0 . (4.3)
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Of course the solutions must have integer Kaluza-Klein and windings numbers, so there

must exist a minimal10 integer invertible matrix H such that F1H and F2H are integer

matrices and the solution can be written as m̂1 = Hh, with h ∈ Z
2d. Then we define I ′ =

tHI tH−1, which is still a complex structure, and F ≡ tH(F2 − F1)H; so the degeneration

limit of the amplitude (3.21) in our g = 2 case is

A =
∑

h∈Z2d

exp

{

π

2

[

thI ′Fh + 2i
∑

M<N

hMFMNhN

]}

× exp
{

2πi tρ1Ih
}

, (4.4)

with a possible half-integer shift of ρ1 (see the appendix for further details).

By unitarity it must be possible to rewrite the result in (4.4) as a sum where each

term is the product of two functions that are one the complex conjugate of the other. Each

function represents the classical contribution to the coupling among three twist fields,

while the quantum contribution follows from the factorization of the other terms in the

partition functions (3.4), see [3]. The presence of the sum is due to the fact that the

vacuum describing an open string stretched between two magnetized D-branes has a finite

degeneracy [5] in compact spaces. So each string state has a number of replica and the

various terms in the sum describe the couplings between these different copies of the twist

fields (of course this is exactly what we need, in phenomenological models, to describe the

Yukawa couplings for different families). Let us see how this works in the simple case of

the 2-torus.

4.1 The two-torus example

For a generic tilted torus the metric can be written as a function of the Kähler and complex

structure moduli

G =
T2

U2

(

1 U1

U1 |U |2

)

= tE
(

0 1

1 0

)

E , (4.5)

having defined the complex structure as U = U1 +iU2 and the Kähler form as T = T1 +iT2.

Thus the vielbein (2.4) reads

E =

√

T2

2U2

(

1 U

1 Ū

)

(4.6)

from which one can write the explicit form of the T 2 complex structure in the integral basis

I = tE
(

i 0

0 −i

)

tE−1 = − 1

U2

(

U1 −1

|U |2 −U1

)

, (4.7)

The magnetic fields on the two magnetized D-Branes are identified by the Chern numbers

pi and the products of the wrappings along the two cycles of the torus Wi:

Fi =

(

0 pi

Wi

− pi

Wi
0

)

, i = 1, 2. (4.8)

10By minimal we mean that any other matrix with the same property is an integer multiple of H .

– 21 –



J
H
E
P
1
2
(
2
0
0
7
)
0
4
2

One can easily check that the matrix H is simply proportional to the 2×2 identity, namely

H = W1W2/δ ⊗ 12×2, where δ = G.C.D {W1,W2}. This implies that eq. (4.4) can be put

in the following form11

∑

h1,h2∈Z

exp

{

−π

2

I

U2

[

h2
1 + |U |2h2

2 + 2Uh1h2

]

+ 2πi
1

δ
CMhM

}

, (4.9)

with

I =
W 2

1 W 2
2

δ2

(

p2

W2
− p1

W1

)

= I21
W1W2

δ2
, (4.10)

where we introduced the intersection numbers

Iij = piWj − pjWi (4.11)

and

CM = W1W2 [(F1 − F2)Y0 + (C1 − C2)]M . (4.12)

We want to perform a T-Duality in such a way that also the zero-th D-Brane is magnetized.

The intersection numbers are invariant under this operation, while the form of the matrix

I is modified due to the transformation of the wrapping numbers. Recalling that the T-

Duality relating a Dirichlet to a magnetized brane is encoded in an O(2, 2, Z) matrix of the

type in eq. (2.17) with12

d =

(

0 −p0

p0 0

)

and c = w̃0 ≡ W̃0 ⊗ 12×2 , (4.13)

it is possible to show, combining the invariance of I21 with eq. (3.22), that W1 → I01 and

W2 → I20. Thus

I =
I01I21I20

δ2
(4.14)

with δ = G.C.D. {I20, I10} = G.C.D. {I20, I10, I21}, since we can make use of the property

I21W̃0 + I20W̃1 + I01W̃2 = 0. Under the same duality the open string moduli transform as

follows

Cµ =
C̃µ

w̃0(F0 − Fµ)
and Y0 = w̃0C̃0 (4.15)

hence

CM = W̃0I12C̃
(0)
M + W̃1I20C̃

(1)
M + W̃2I01C̃

(2)
M . (4.16)

where the superscript (i) indicates the three boundaries and the subscript M is the Lorentz

index.

The configurations studied [3] had δ and all W̃i equal to 1. In this case I is always

an even number, since it is the product of three integers that sum to zero. Thus the

contribution of the cocycles in (4.4) is irrelevant and (4.9) can be rewritten as it was done

11In the configuration of [3] one gets I > 0, otherwise one should write |I |, because of the note before

eq. (3.18).
12We indicate with a tilde the quantities in the picture with a magnetized zero-th D-Brane.
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in [3]. We choose not to do that here, because it is easier to deal always with (4.9) without

treating the case W̃i = 1 separately. In order to factorize the amplitude above and find the

Yukawa couplings corresponding to the states of the open strings stretched between pairs

of D-Branes with different magnetic fields on their world volume, it is necessary to first

perform a Poisson resummation on the integer h1

+∞
∑

h1=−∞

e−πAh2
1+2πh1As =

1√
A

eπAs2
+∞
∑

h1=−∞

e−π
h2
1

A
−2πih1s , A > 0. (4.17)

This yields a new form of the same amplitude which is easy to factorize once we introduce

a new pair of integers, r and k, through the relations

h1 = rI + l = I

(

r +
l

I

)

and h2 = k − r , (4.18)

where l = 1, . . . , I. It is manifest that in this way both the former and the latter pair of

integers range in the whole Z. Notice that this is ensured by summing over the additional

integer l as well. Simple algebraic manipulations then lead to the product of two Jacobi

Theta-functions as follows

A =

√

2U2

I

I
∑

l=1

ϑ

[

l
I − 1

I
C1
δ

C2
δ

]

(

0
∣

∣IU
)

× ϑ

[

l
I − 1

I
C1
δ

−C2
δ

]

(

0
∣

∣ − IŪ
)

(4.19)

This result generalizes the one of ref. [3] and is in agreement13 with the section 3.1.3 of [12],

as we find that, if the intersection numbers Iij are not coprime, one has I20I01I21/δ
2 non

vanishing Yukawa couplings, labeled by the integer l. Indeed, in the dual picture involving

intersecting D-Branes, every open string living in the intersection between two fixed D-

Branes, say for instance i and j, will only couple to |IjkIik|/δ2 strings from the intersections

between the D-Brane k and the D-Branes i and j [12].

4.2 Twist fields couplings on a generic T 2d compactification

In order to factorize the classical contribution to the partition function (4.4) in the most

general case analyzed in section 3 and read the corresponding twist field couplings, we need

to use the properties of the complex structure. Let us first decompose I ′ in terms of its

d × d blocks

I ′ =

(

A B

C D

)

. (4.20)

Hence it is simple to check that I ′2 = −1 yields

AB = −BD , and A2 = −(1 + BC) . (4.21)

13The apparent mismatch related to the presence of the wrapping numbers of the D-Branes in the

Wilson lines dependence of the couplings is resolved by checking that WiC
(i)
1 , WiC

(i)
2 ∈ [0, 1] as well

as the parameters ǫi and θi defined in [12].
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Then we choose a basis for the torus lattice where the combination tH(F2 − F1)H takes

the following form

F =

(

0 F̂

−F̂ 0

)

. (4.22)

This can be done by putting the matrix F in the form of eq. (2.35) (thanks again to the

result of the appendix) and by a suitable relabeling of the rows and the columns. Notice

that this relabeling does not affect the form of the amplitude to be factorized. For sake of

brevity, we also introduce the 2d-components vector β = tHρ1. Then the general amplitude

to be factorized has the following form14

∑

hi∈Zd

exp

{

π

2

[

(

th1
th2

)

(

−BF̂ (i + A)F̂

(i − D)F̂ CF̂

)(

h1

h2

)]

+ 2πi tβ1h1 + 2πi tβ2h2

}

. (4.23)

As next step we need to perform a Poisson resummation

∑

h1∈Zd

e−π th1Bh1+2π th1Bs =
1√

DetB
eπ tsBs

∑

h1∈Zd

e−π th1B
−1h1−2πi th1s (4.24)

on the first d components of h which we indicate with h1. So in our case we have

B =
1

2
F̂ tB and s =

1

2
B−1(A + i)F̂ h2 + iB−1β1 . (4.25)

The first exponential in the r.h.s. of the Poisson resummation formula (4.24) yields a

quadratic term in the vector h2, which can be combined with a similar contribution present

in the initial expression (4.23)

π

4
th2F̂ (i + tA) tB−1(i + A)F̂ h2 +

π

2
th2CF̂h2 =

=
π

2
th2

[

F̂ (i + tA)F̂−1B−1(i + A)F̂ + CF̂
]

h2 . (4.26)

Recalling that I ′F̂ is a symmetric matrix, it is not difficult to see that AF̂ = −F̂ tD. Some

algebraic manipulations involving these identities simplify the previous expression into

iπ th2B
−1(i + A)F̂ h2. (4.27)

Hence the Poisson resummation performed on eq. (4.23) gives

1
√

Det(2BF̂ )

∑

hi∈Zd

exp
{

iπ
[

th2B
−1(i + A)F̂ h2 + 2i tβ1

tB−1F̂−1β1+

+ th2F̂ (i + tA) tF̂−1B−1β1 + tβ1F̂
−1B−1(i + A)F̂ h2

+2 tβ2h2 + 2i th1
tB−1F̂−1h1 − 2 th2B

−1(i + A)h1 −
4i th1

tB−1F̂−1β1

]}

. (4.28)

14In the following i indicates a d × d imaginary matrix: i ≡ i 1d×d.

– 24 –



J
H
E
P
1
2
(
2
0
0
7
)
0
4
2

In the following manipulations we will focus on the expression in the square brackets only.

It is useful to observe that the by redefining

γ1 = F̂−1β1 and k = F̂−1h1 (4.29)

and making use again of the identities mentioned earlier, involving the entries of the com-

plex structure and of F̂ , one can rewrite the content of the square brackets above as

th2B
−1(i + A)F̂ h2 + 2i tγ1B

−1F̂ γ1 + th2B
−1(i + A)F̂ γ1 +

+ tγ1B
−1(i + A)F̂ h2 + 2 tβ2h2 + 2i tkB−1F̂ k −

−2 th2B
−1(i + A)F̂ k − 4i tkB−1F̂ γ1 . (4.30)

As k in general is no longer a column of integers, it is convenient to write it distinguishing

its integer part from the remainder

k = r + F̂−1l , (4.31)

with r ∈ Z
d and lα ∈ [1, F̂αα]. Thus the expression above reads

2 t
(

r + F̂−1l − γ1

)

iB−1F̂
(

r + F̂−1l − γ1

)

+ th2B
−1(i + A)F̂ h2 +

−2 th2B
−1(i + A)F̂

(

r + F̂−1l − γ1

)

+ 2 tβ2h2 . (4.32)

Finally, defining s = r − h2 ∈ Z
d, one has

t
(

r + F̂−1l − γ1

)

B−1(i − A)F̂
(

r + F̂−1l − γ1

)

+ 2 t
(

r + F̂−1l − γ1

)

β2 +

t
(

s + F̂−1l − γ1

)

B−1(i + A)F̂
(

s + F̂−1l − γ1

)

− 2 t
(

s + F̂−1l − γ1

)

β2 . (4.33)

Thus the factorized amplitude reads

A =

F̂αα
∑

lα=1

1
√

Det(2BF̂ )
ϑ

[

F̂−1(l − β1)

β2

]

(

0
∣

∣B−1(i − A)F̂
)

×

ϑ

[

F̂−1(l − β1)

−β2

]

(

0
∣

∣B−1(i + A)F̂
)

(4.34)

written in terms of d-dimensional Theta-functions

ϑ

[

a

b

]

(ν|τ) =
∑

h∈Zd

exp
[

πi t(h + a)τ(h + a) + 2πi t(ν + b)(h + a)
]

. (4.35)

Notice that the function in the second line of the eq. (4.34) is indeed the complex conjugate

of the one in the first line, as F̂ , A and B are real d × d matrices since I in eq. (2.9)

is real. This function is to be interpreted as the classical contribution to the Yukawa

couplings for three twisted states arising in a generic T 2d compactification of string theory

with magnetised space filling D-Branes. The sum in front of the couplings reveals their
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multiplicity, given by DetF̂ =
∏d

α=1 F̂αα. Finally for the sake of completeness let us write

the expression for the correlator between three twist fields (fixing one l, i.e. one particular

coupling) including also its quantum contribution with the convention ǫα
0 + ǫα

1 + ǫα
2 = 1:15

〈σǫ1σǫ2σǫ3〉 =

3
∏

i=1

d
∏

α=1

[

Γ(1 − ǫα
i )

Γ(ǫα
i )

]
1
4

(Det(2B))−
1
4

×ϑ

[

F̂−1(l − β1)

β2

]

(

0
∣

∣B−1(i − A)F̂
)

. (4.36)

We can check that this result is in agreement with the literature considering in particular

the multiplicity of the Yukawa couplings in the case of parallel fluxes, i.e. when all of

the boundaries are magnetized D-Branes with magnetic fields of the type (2.35) put in

the form (4.22). Notice that this setup can always be T-dualized into a configuration of

intersecting D-Branes on a 2d-dimensional torus that is not geometrically a direct product

of d T 2’s. However in the counting of the non vanishing 3-point correlators between twisted

states the metric of the torus is not involved, and thus we expect this multiplicity is equal

to the one already calculated [12] in fully factorizable models of D-Branes at angles on

(T 2)d. Indeed following the steps of the previous subsection it is not difficult to see that

H = w1w2/δ, δ being a diagonal matrix whose eigenvalues are the G.C.D.’s of the entries

of w1 and w2 as in eq. (2.43). Then by generalizing also the definition (4.11) into a

diagonal matrix, with the same structure and the intersection numbers as entries, one has

F̂ = I21w1w2/δ
2. Upon the straightforward generalization of the T-Duality in eq. (4.13)

F̂ → I21I20I01/δ
2 where δ now contains the G.C.D.’s of the entries of the three intersection

numbers and

DetF̂ =

d
∏

α=1

(p2αW0α − p0αW2α)(p0αW1α − p1αW0α)(p2αW1α − p2αW2α)

δ2
αα

(4.37)

This number agrees with the product of the multiplicity of Yukawa couplings in each of

the T 2’s inside the T 2d defined by the form of the magnetic fields (see [12]).
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A. Generic and block-diagonal integer matrices

A generic integer 2d × 2d antisymmetric matrix M can always be put in a block-diagonal

form by means of a transformation of the type M → tOMO, O being a unimodular integer

matrix.

In order to show that this is indeed the case one can observe that any antisymmetric

matrix:

M =

(

A B

−tB C

)

(A.1)

where A and C are 2k × 2k and 2(d − k) × 2(d − k) antisymmetric matrices and B is a

rectangular 2k × 2(d − k) matrix, can be block diagonalized by

O =

(

12k −A−1B

0 12(d−k)

)

, (A.2)

getting:

tOMO =

(

A 0

0 tBA−1B + C

)

(A.3)

Notice that each block of tOMO is also an antisymmetric matrix and that the determinant

of the matrix O is one. Since the form of tOMO in eq. (A.3) is independent of the choice

of k, one can use an iterative procedure to obtain the final block diagonal form always

choosing k = 1. Using this procedure d − 1 times one finds

tOMO =













a1 0 0 0 · · · · · ·
0 a2 0 0 · · · · · ·
...

...
...

...
...

...

0 0 0 0 · · · ad













⊗
(

0 1

−1 0

)

, (A.4)

where: O = O1O2 . . . Od−1. By a suitable permutation of the rows and of the columns of

the matrix above one can rewrite the transformed matrix as

M ′ =

(

0 M̃

−M̃ 0

)

, (A.5)

where M̃ = diag{a1, a2, . . . ad}.
If the matrix M has integer elements, the transformed matrix will be integer only if

DetA = 1. We will now show that it is always possible to reduce to this case at any step of

the iterative procedure. Obviously, if at least one element of the matrix M is 1, it is enough

to suitably relabel the rows and the columns. Otherwise, if DetA 6= 1 we can distinguish

various cases. The simplest one is when in a row two elements are coprime. By relabeling

of the rows and the columns it is possible to put these elements (a and b) in the first row

as follows:

M =













0 a b · · ·
−a 0 c · · ·
−b −c 0 · · ·
...

...
...

. . .













. (A.6)
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Then it is easy to see that the unimodular integer matrix

Q =

















1 0 0 0 · · ·
0 x −b 0 · · ·
0 y a 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

















, (A.7)

with x, y solution of the Diophantine equation ax + by = 1, transforms M into:

M → tQMQ =













0 1 0 · · ·
−1 0 c · · ·
0 −c 0 · · ·
...

...
...

. . .













, (A.8)

which has DetA = 1.

If, instead, there is no row with two coprime elements, but in eq. (A.6) a 6= ±b and

their greatest common denominator d is different from 1, one can repeat the previous step

with the matrix:

Q′ =

















1 0 0 0 · · ·
0 x − b

d 0 · · ·
0 y a

d 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

















, (A.9)

where now x and y solve the Diophantine equation ax + by = d. This yields

M → tQ′MQ′ =













0 d 0 · · ·
−d 0 c · · ·
0 −c 0 · · ·
...

...
...

. . .













. (A.10)

One has to apply this procedure (which does not change the other elements of the first row,

from the 4th column on) till the matrix is reduced to one of the following cases: either in

the first row of the transformed M there are two coprime non-vanishing entries, then one

can use the matrix Q to obtain a1 = 1; or all of the non-zero elements there coincide with

±d. This is the case if for instance in the original matrix M the first row contained elements

which were all multiples of d. If there is any other row in the transformed matrix with two

different non-zero elements a 6= ±b for which d is not a divisor, then, by exchanging rows

and columns among themselves, it is possible to bring this as the first row and reapply the

transformations encoded in Q or Q′. Otherwise one can have two possible forms for the

transformed matrix. One possibility is that all of the elements of M are integer multiples

of d. In this case the common divisor d can be factored out to reduce to the case with

DetA = 1.
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The other possibility is that the matrix has diagonal blocks, in which all the elements

are multiple of different integers di. If all the non trivial blocks are 2 × 2, we have got our

aim; otherwise we can factor out di from the block of larger dimensions; for each of them

we are again reduced to the case with DetA = 1. Repeating the procedure, if needed, we

finally end to the matrix:

M1 =

















0 d1 0 0 · · ·
−d1 0 0 0 · · ·
0 0 0 d2 · · ·
0 0 −d2 0 · · ·
...

...
...

...
. . .

















(A.11)

with all integer elements.

Although this already is the final form we are after, for sake of completeness we recall

that the normal form of the initial matrix (A.4), as discussed in [35], has the further

property that aα+1/aα ∈ N, ∀α. In order to achieve this (even if it is not strictly necessary

for the computations considered here) one can use the following transformation

Q′′ =

















1 0 0 0 · · ·
0 1 0 0 · · ·
1 0 0 1 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

















(A.12)

that mixes the di’s and gives back a form that can be reduced by means of either Q or Q′.

Following this procedure, it is possible to convince oneself that the final matrix (A.4) entries

satisfy the property mentioned above, since one actually ends the repeated application of

Q, Q′, and Q′′ only if in the first 2× 2 block there is a one, or if the matrix is proportional

to an integer as a whole.

Coming back to our main problem, we can now apply the procedure outlined in this

appendix to rewrite the quantized magnetic field (2.27) on a generic magnetized D-Brane

in the form (2.35). It is first convenient to define an integer matrix P associated to the

magnetic field (2.27)

P = F × m.c.m {wMwN , M 6= N, ∀M,N = 1, . . . , 2d} = ωF. (A.13)

where ω is the minimum common multiple of all the pairs of wrappings that appear in the

denominators of eq. (2.27). The integer matrix P can now be transformed into a block-

diagonal form as in eq. (A.4) by means of an integer unimodular matrix O that preserves

the lattice of the torus as

P → tOPO = ω tOFO = ωFblock. (A.14)

Hence Fblock will have the same form as eq. (A.4) with rational entries whose numerators

and denominators could still have factors in common. By expurgating these factors one

exactly recovers the form in eq. (2.35). First of all we will show that the phase factor in the
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boundary state (2.47) is not affected by the change of the fundamental cell in the lattice

torus performed in (A.14). It reads:

Ph = exp

[

iπ
∑

M<N

m̂MFMNm̂N

]

= exp

[

iπ

ω

∑

M<N

m̂MPMN m̂N

]

(A.15)

where P is the integer matrix defined in (A.13), that we write in the form of eq. (A.1). To

write it as a block diagonal matrix, we use the techniques just discussed; focusing at first

on the simplest case with

A =

(

0 1

−1 0

)

, (A.16)

let us consider how the phase Ph of (A.15) transforms under the substitution: m̂ = Om̂′,

with O as in eq. (A.2). One gets:

Ph = exp





iπ

ω



m̂′
1A12m̂

′
2 +

2d
∑

j=3

B2jm̂
′
jA12m̂

′
2 − m̂′

1A12

2d
∑

j=3

B1jm̂
′
j

−
2d
∑

j,k=3

B2jm̂
′
jA12B1km̂

′
k +

2d
∑

j=3

m̂′
1B1jm̂

′
j +

2d
∑

j,k=3

B2jm̂
′
jB1km̂

′
k

+

2d
∑

j=3

m̂′
2B2jm̂

′
j −

2d
∑

j,k=3

B1jm̂
′
jB2km̂

′
k +

2d
∑

k>j=3

m̂′
jCjkm̂

′
k







 (A.17)

By remembering that all the winding numbers m̂N must be integer multiples of the cor-

responding wrapping numbers wN , one can check that, in spite of the denominator ω, all

the terms in the exponent are integer multiples of iπ. In fact combining the form of the

matrices (A.2) and (A.13), one finds the following expressions for m̂ = Om̂′

m̂1 = m̂′
1 +

ω

w2

2d
∑

i=3

p2i
m̂′

i

wi

m̂2 = m̂′
2 −

ω

w1

2d
∑

i=3

p1im̂
′
i

m̂′
i = m̂i (A.18)

In this case, in order to have the matrix A in the form (A.16), it is necessary that p12 = 1

and ω = w1w2, hence, since from the last line of the previous equation m̂′
i/wi must be

integer, it is also true, in the first and second line, that the transformed winding numbers

m̂
′N are integer multiples of the wrapping numbers wN , ∀N = 1, 2, . . . , 2d. Thus each of

the terms in the sum (A.17) is an integer number, as one can check for instance considering

the first term of the second line in eq. (A.17); writing m̂
′N = m

′NwN with m
′N ∈ Z one

gets:

1

ω
B2jm̂

′
jA12B1km̂

′
k =

1

ω

ωp2j

w2wj
m′

jwj
ωp1k

w1wk
m′

kwk = p2jm
′
jp1km

′
k ∈ Z. (A.19)
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So we can freely change the sign of each term in eq. (A.17), obtaining

Ph = exp



iπ





∑

M<N

m̂
′M (tOFO)MNm̂

′N +
1

ω

2d
∑

j=3

B1jB2jm̂
′2
j







 (A.20)

= exp



iπ





∑

M<N

m̂
′M (tOFO)MNm̂

′N +

2d
∑

j=3

p1jp2j

m̂′
j

wj







 , (A.21)

where we have used the explicit expression of B1j and B2j in terms of the Chern numbers

p1j and p2j and of the winding numbers; moreover we have taken into account the fact

that (m′
j)

2 has the same parity (even/odd) as m′
j = m̂′

j/wj . Thus the phase factor can be

written in terms of the transformed field tOFO and of the transformed winding numbers

m̂′’s with the same functional form as the original one (A.15), with a half-integer shift of

the Wilson line when p1jp2j is odd.

If tOFO is already block diagonal, we have ended our job, otherwise we have to repeat

the procedure. In an analogous fashion, if the entries of A are not equal to one, one can

check that the transformations related to the matrices in eq. (A.7) and (A.9), involved in

reducing A to the form considered in the previous example, also preserve the form of the

phase factor up to half-integer Wilson lines. With similar manipulations it is also possible

to prove, in a basis in which (F2 −F1) is block-diagonal, that the phase factors in eq. (4.4)

follow from those in eq. (4.2). As usual, one has to introduce h ∈ Z
2d by using m̂1 = Hh;

then it is possible to check that the combination
∑

M<N (Hh)M (F2−F1)MN (Hh)N is equal,

modulus two, to
∑

M<N hM [H(F2 − F1)H]MN hN , apart from terms quadratic in hM that

can be reabsorbed into a half-integer shift of the Wilson lines.

Finally we mention that the transformations discussed in this appendix do not affect

the other contributions to the amplitude, in the effective field theory limit that we consider

for the factorization, if one suitably redefines the complex structure in eq. (4.2). Indeed

the combination tm̂1IFm̂1 can be rewritten, by redefining m̂1 = Om̂′
1, as

tm̂′
1

tOIFOm̂′
1 = tm̂′

1
tOItO−1 tOFOm̂′

1 = tm̂′
1ÎFblockm̂

′
1, (A.22)

Î still being a good complex structure and Fblock being in the form (A.4).
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[16] D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields

from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134].
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